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across the genome, outside of a small 
-number of known imprinted genes 

and regions subject to X-inactivation 
in females, dna methylation at cpG  
dinucleotides is often assumed to be 
complementary across both alleles in a 
diploid cell. however, recent findings 
suggest the reality is more complex, with 
the discovery that allele-specific methyla-
tion (asm) is a common feature across 
the human genome. a key observation 
is that the majority of asm is associated 
with genetic variation in cis, although a 
noticeable proportion is also non-cis in 
nature and mediated, for example, by 
parental origin. asm appears to be both 
quantitative, characterized by subtle 
skewing of dna methylation between 
alleles, and heterogeneous, varying 
across tissues and between individuals. 
these findings have important implica-
tions for complex disease genetics; while 
cis-mediated asm provides a functional 
consequence for non-coding genetic vari-
ation, heterogeneous and quantitative 
asm complicates the identification of 
disease-associated loci. we propose that 
non-cis asm could contribute toward 
the “missing heritability” of complex 
diseases, rendering certain loci hemizy-
gous and masking the direct association 
between genotype and phenotype. we 
suggest that the interpretation of results 
from genome-wide association studies 
can be improved by the incorporation of 
epi-allelic information and that in order 
to fully understand the extent and conse-
quence of asm in the human genome, a 
comprehensive sequencing-based analysis  
of allelic methylation patterns across tis-
sues and individuals is required.
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DNA methylation is the best understood 
and most stable epigenetic modification 
modulating the transcription of mamma-
lian genomes. The methylation of CpG 
dinucleotides disrupts the cells’ transcrip-
tional machinery by blocking the bind-
ing of transcription factors and attracting 
methyl-binding proteins that initiate chro-
matin compaction and bring about gene 
silencing.1 Because DNA methylation 
plays a critical role in cellular development 
and function, aberrant DNA methylation 
signatures are hypothesized to be involved 
in diverse human pathologies including 
cancer,2 congenital imprinting disorders,3 
and a range of complex chronic disease 
phenotypes including schizophrenia and 
bipolar disorder.4 Elucidating both the 
genomic patterns of DNA methylation 
and the factors that determine them thus 
has important implications for under-
standing the causes of human health and 
disease.

Allele-Specific DNA Methylation

Across the majority of the mammalian 
genome, DNA methylation is assumed 
to be complementary on both alleles, 
although there are several classic excep-
tions where this is known not to be the case 
and DNA methylation is allele-specific 
(allele-specific methylation; ASM). First, 
DNA methylation plays an integral role in 
regulating the parental-origin-dependent 
(POD) allele-specific expression (ASE) 
of imprinted loci. Second, in females, 
DNA methylation coordinates the ran-
dom silencing of either the maternally- 
or paternally-derived X-chromosome to 
ensure dosage-compensation with males 



www.landesbioscience.com Epigenetics 579

 POint Of ViEw POint-Of-ViEw

track the parental transmission patterns 
of alleles is exemplified by recent GWAS 
data in which significant genetic asso-
ciations have been uncovered, but only 
when the parental origin of the allele is 
taken into consideration.20

ASM is Quantitative  
and Heterogeneous in Nature

Genomic imprinting and other classical 
examples of ASM (e.g., XCI) have been 
traditionally viewed as all-or-nothing 
phenomenon with one allele fully methyl-
ated and the other unmethylated. Several 
studies have assessed allelic methylation 
as a quantitative phenomena and found 
that many allele-specific effects are in fact 
relatively subtle, characterized by alleli-
cally skewed DNA methylation rather 
than clear-cut biphasic ASM patterns.11,14 
This is perhaps not surprising; even clas-
sically imprinted regions of the genome, 
believed to be associated with fully mono-
allelic expression, can show considerable 
epigenetic heterogeneity.21 Differences in 
the degree of methylation between alleles 
for cis-mediated ASM are important as 
they suggest that local genotype acts as 
a “facilitator” of ASM, with as yet unde-
termined additional factors (most likely 
trans-acting sequence motifs, stochastic 
events and environmental factors) deter-
mining the absolute pattern of allelic 
methylation. Again, this has important 
ramifications for GWAS analyses, as vari-
ation in the degree of ASM-skewing across 
individuals will act to dilute the strength 
of genetic associations and suggests that 
effect sizes for disease-associated genetic 
variants may actually be much larger 
when epi-allelic variation is taken into 
consideration.

In addition to the quantitative nature 
of ASM, several studies have found evi-
dence for tissue (and presumably cellu-
lar) heterogeneity in allelic methylation 
patterns (table 1). While genomic 
imprinting at several loci is known to be 
both tissue-specific and developmentally- 
regulated, the observation that cis-regu-
lated ASM also demonstrates tissue- or 
cell-type heterogeneity has important 
implications for genetic studies of complex 
disease. It suggests, for example, that cer-
tain loci may be expressed hemizygously 

ASM means that allelic methylation is fre-
quently inherited in a Mendelian fashion 
and provides an epigenetic mechanism by 
which non-coding sequence variation can 
have phenotypic effects. This has impor-
tant implications for the interpretation of 
results from the current swathe of com-
plex disease GWAS data, where signifi-
cantly associated alleles are often located 
a considerable distance from transcribed 
sequences and have no obvious functional 
consequence. The integration of epi-allelic 
data with sequence information will aid in 
the functional annotation of genetic varia-
tion, providing criteria by which to priori-
tize non-coding disease-associated variants 
for further study.17 The publicly available 
ASM datasets (e.g., http://epigenetics.iop.
kcl.ac.uk/ASM) provide an immediate and 
easily accessible resource for the GWAS 
community for this purpose, although in 
the longer term, a comprehensive epigen-
etic analysis of candidate SNPs and hap-
lotypes resulting from GWAS analyses is 
warranted.

Non-Cis Mediated ASM  
is also a Feature of the Genome

Although cis-acting factors can account 
for the majority of ASM detected, a 
notable minority is non-cis in nature, 
presumably due to trans-acting factors, 
stochastic events or POD effects. Non-
cis ASM poses a significant problem for 
GWAS analyses as it can render loci 
effectively hemizygous and dilutes or 
breaks allelic association. It is plausible 
that such ASM explains a proportion of 
the “missing heritability” associated with 
many common human diseases.18 To 
date, less than 60 genes have been veri-
fied as imprinted in the human genome, 
although recent computational analyses 
suggest that the real number may be con-
siderably higher.19 Although verification 
is ongoing, our own genome-wide analy-
ses support the computational predica-
tions, with non-cis effects accounting 
for ~10% of detected ASM.11 These data 
highlight a limitation of cross-sectional 
population-based molecular genetic anal-
yses (the prominent design for most cur-
rent GWAS) in which information about 
the parental origin of alleles cannot be 
determined. The utility of being able to 

via the process of X-chromosome inactiva-
tion (XCI). A third type of ASM has been 
reported whereby DNA methylation is 
determined by DNA sequence in cis and 
consequently shows Mendelian inheri-
tance patterns.

Recent methylomic studies have uncov-
ered numerous regions of the genome that 
are characterized by intermediate levels of 
DNA methylation;5,6 it is plausible these 
are largely a result of ASM rather than 
a consequence of partial methylation 
across both alleles in the cell population. 
While early examples of autosomal ASM 
occurring outside of classical imprinting 
control regions were largely confined to 
specific loci7,8 or chromosomes9,10 recent 
investigations by several groups11-14 have 
started to yield important insights into 
the genome-wide nature and prevalence 
of ASM. These studies suggest that ASM 
is relatively widespread across the mam-
malian genome, quantitative rather than 
qualitative, both cis and POD in nature, 
and often heterogeneous across tissues and 
individuals (table 1). In this article we 
discuss the implications of these findings 
for maximizing and interpreting statisti-
cal association signals that emerge from 
genome-wide genetic association studies 
(GWAS), the etiological paradigm cur-
rently dominating contemporary biomed-
ical genetic research. We highlight the 
need for further research into the nature 
and extent of ASM and suggest that inte-
grating genome-wide surveys of ASM into 
current GWAS analyses will be a valuable 
approach for identifying disease-associ-
ated genomic loci.

ASM is Often Associated  
with Genotype In Cis

Genome-wide studies of ASM conclude 
that cis-effects (i.e., where local genotype 
is associated with allelic DNA methyla-
tion on the same DNA molecule) represent 
the most prevalent type of ASM. These 
observations are consistent with the recent 
methylation quantitative trait loci (mQTL) 
mapping studies performed in human brain 
tissue,15,16 which suggest that a large pro-
portion of differential DNA methylation 
between unrelated individuals is associ-
ated with common cis-acting genetic dif-
ferences. Widespread genotype-mediated 
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stochastically-established but clonally-
stable ASM/ASE has important impli-
cations for research aimed at detecting  
genetic effects on phenotypic variation, as 
it renders each individual a unique mosaic 
for hemizygosity at numerous autosomal 
loci.

ASM Provides a Biological  
Mechanism for Genetic  

and Environmental Effects  
on Phenotype

One criticism of the GWAS approach 
is that it investigates genetic effects in 
isolation; complex phenotypes are now 
recognized as resulting from interac-
tions between both the genome and the 
environment (G X E). Several validated 

transcription is not a sole consequence of 
DNA methylation, but is also regulated 
by other epigenetic processes including 
histone modification, and is influenced by 
methylation-independent cis- and trans-
acting genetic variation, in addition to 
environmental factors.

A recent study reported high levels of 
autosomal ASE occurring stochastically in 
clonal cell lineages in a process reminiscent 
of XCI in females.25 It is likely that this 
phenomenon is controlled by epigenetic 
mechanisms such as ASM, with the conse-
quence that loci demonstrating intermedi-
ate levels of DNA methylation not caused 
by POD- or cis-mediated ASM, may still 
exhibit stochastic patterns of clonally-
inherited allelic methylation patterns 
that directly effect gene expression. Such 

in a subset of tissues, and that the use of 
disease-relevant samples is an important 
issue for researchers.

ASM-Mediated ASE: Implications 
for Phenotypic Variation

Like ASM, ASE is common in the human 
genome and also appears to be largely 
determined by cis-acting sequence poly-
morphisms.22-25 Widespread ASM offers 
an obvious potential epigenetic mecha-
nism underpinning ASE; there are several 
examples where allelic methylation levels 
correlate to allelic or total mRNA expres-
sion levels of nearby genes (table 1).  
These data are limited to only a handful of 
validated ASM loci and are often inconsis-
tent. Such patterns are expected given that 

Table 1. Summary of experimental methods and key findings from large-scale genomic surveys of ASM

Study Discovery method Tissue/cell-type Key findings

Kerkel et al. 
200812

MSnP assay12 using 
Affymetrix Human 

Mapping 50K (~50,000 
SnPs) and 250K (~250,000 

SnPs) arrays. 

Peripheral blood leuko-
cytes, bone marrow cells, 
CD34+Lin- hematopoietic 
cells, kidney, brain, lung, 

placental, and buccal 
cells. 

0.16% of queried loci demonstrated clear-cut ASM, with 75%  
of validated regions associated with genotypoe in cis.

Genotype-dependant ASM was associated with ASE for several loci.

Schilling et al 
200932

Comparative methyl-CpG 
immunoprecipitation and 
tiling arrays, informative 
for 28Mb of sequence. 

Macrophages from two 
inbred mouse strains 
(C57BL/6 and BALB/c).

Concluded that ASM is largely attributable to cis-acting polymorphisms.

Zhang et al 
20099

Bisulphite conversion, sub-
cloning and sequencing of 
190 gene promoter regions 

on chromosome 21. 

Peripheral blood leuko-
cytes,  embryo kidney 

cells, hepatocelluar car-
cinoma cells, and fibro-

blasts. 

identified three regions of ASM in leukocytes from a healthy individual. 

Schalkwyk et 
al 201011

Quantitative MSnP 
assay using Affymetrix 

Genomewide Human SnP 
Array 6.0 (~1 million SnPs). 

Peripheral blood leuko-
cytes,  embryo kidney 

cells, hepatocelluar car-
cinoma cells, and fibro-

blasts. 

identified three regions of ASM in leukocytes from a healthy individual. 

Demonstrated that genotype-associated ASM is often linearly 
associated with total mRnA transcript levels

Shoemaker 
et al 201014

Bisulphite padlock capture 
and targeted resequencing 
using the illumina Genome 

Analyzer to assess 

2,020 CpG islands and 
targeted regions of the 

genome.  

Peripheral blood leuko-
cytes, fibroblasts, induced 

pluripotent stem cells, 
and human embryonic 

stem cells. 

Estimated that between 23-37% of heterozygous SnPs (primarily 
occurring in CpG positions), are associated with some degree of ASM. 

the majority of cis-mediated ASM is cell-type specific, with a large 
amount of between-individual heterogeneity. 

Hellman et al 
201013

MSnP assay using 
Affymetrix Genomewide 

Human SnP Array 5.0 
(~500,000 SnPs). 

Epstein-Barr virus trans-
formed B-lymphocytes,  
peripheral blood leuko-
cytes, and post-mortem 

tissue. 

Observed an average genomewide ASM frequency of 20%, which was 
primarily mediated by cis-effects. 

Explored the potential mechanisms of genotype-mediated ASM and 
found a positive relationship between the presence of a CpG at the SnP 

site and the methylation of close-by CpGs.
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the specific mechanism(s) by which local 
genotype influences allelic methylation 
levels. In order to gain a greater under-
standing of how genetically-, POD- and 
stochastically-driven ASM exerts a func-
tional consequence in the cell, a system-
atic investigation of ASM across tissues 
and cell types in the context of familial 
DNA sequence information is required.

Technological advances in methylo-
mic-profiling methodologies mean that it 
is becoming feasible to map allelic patterns 
of DNA methylation across the genome at 
single base-pair resolution; the first refer-
ence single-base-resolution map of the 
methylome was recently published for 
two human cell lines, providing detailed 
information about the extent and location 
of methylated loci.6 Despite such progress, 
technical limitations associated with cur-
rent bisulfite-sequencing methods mean 
that the ability to determine epi-alleles and 
epi-haplotypes for all genomic locations is 
still constrained.30 It is hoped that single-
molecule sequencing-based technologies 
currently in development will provide 
the high-resolution quantitative and epi-
allelic information that is required for a 
comprehensive and sensitive analysis of 
ASM.31 Ultimately, once normal patterns 
and sources of inter-individual variation in 
ASM have been defined, they will contrib-
ute greatly to our understanding about the 
interplay between genetic and epigenetic 
factors in mediating individual differences 
in phenotype and disease susceptibility.
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