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Abstract

Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic
and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the
context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60
females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation
was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation
values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks,
and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk
allele A (p = 9.4061024, permutation p = 1.061023). Further analysis across the 46 kb LD block using sliding windows
localised the most significant difference to be within a 7.7 kb region (p = 1.1361027). Sequence level analysis, followed by
pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating
SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved
Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone
H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and
epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-
associated loci, thus providing a novel route to aid unravelling common complex diseases.
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Introduction

Type 2 diabetes (T2D) and obesity are complex diseases with

polygenic susceptibility. Recent genome wide association (GWA)

studies have provided significant insight towards gene discovery

and, to date, around 30 common variant loci have been associated

with T2D [1,2]. Despite these important advances, known genetic

variants explain ,10% of the heritable component of disease, and

little is known about their contribution to aetiology. Ongoing

studies are attempting to explain this ‘missing heritability’ in

complex diseases via the detection of rare and structural variants,

interactions between discovery SNPs and causal variants, and

identification of associated stable epigenetic modifications [3].

Environmental determinants of these complex diseases are well-

characterised by a wealth of epidemiological literature [4] but

much less is understood about their mechanistic role or interaction

with genetic susceptibility. Epigenetic mechanisms regulate gene

expression, may be induced via environmental agents and can be

inherited through somatic or germline pathways [5]. Genome-

wide epigenetic reprogramming occurs during gametogenesis,

implicating early fetal development as a period susceptible to this

environmental influence. Strong evidence in humans and rodents
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implicates in utero fetal nutritional deficiency with adult-onset

chronic diseases including T2D [6,7]. Furthermore, differentially

methylated regions (DMRs) of genes of relevance to T2D have

been identified in individuals prenatally exposed to famine [8].

Epigenetic variability, set at an extremely early development stage,

permeates through all three subsequently developing germ layers

[9], thereby facilitating possible identification in mesoderm-

derived blood.

An epigenomic approach may provide insight into the genetic,

epigenetic and environmental factors underlying the aetiology of

complex diseases. The potential for interaction between these

factors is increasingly understood, however the relationship

between specific epigenetic modifications and genomic features,

whether independent or dependent, is poorly explained in the

context of disease and phenotype. In contrast, the role of aberrant

epigenetic marks is well established at single gene loci with rare

imprinted disorders [10] and as well in cancer genomes with global

hypomethylation and locus hypermethylation [11]. Recent

investigations in other complex diseases, such as Systemic Lupus

Erythematosus with discordant monozygotic twins [12] and Type

1 diabetes with imprinted common susceptibility [13], have been

successful. A range of new technology platforms and bioinformatic

tools now exist with which to test hypotheses around these putative

interactions. The developmental and environmental origins of

T2D suggest a potential role of programmed and/or stochastic

epigenetic processes in determining disease risk that could arise

during early embryonic development and are identifiable in a

range of tissues. We hypothesize that genotype-epigenotype

interactions may underlie the aetiopathogenesis of T2D, as a

complex disease, and use an integrated platform with which to

investigate their occurrence. We applied methylated DNA

immunoprecipitation (MeDIP) to fragmented genomic DNA

sampled from participants with and without T2D-risk genotypes.

Enriched fragments were hybridised against total input DNA on a

Nimblegen 385k array, encompassing known regions of genetic

susceptibility to T2D (regions identified from previous locus and

genome-wide association analyses; monogenic T2D and obesity

genes and related disorders (as of 2008) (see Supplementary Table

S1 for full list). With each array tiling .21 Mb, a total of .1.2 Gb

of sequence was subsequently statistically assessed for DNA

methylation status. By combining genotype with methylation

status, an investigation for allele- [14] or haplotype-specific effects

and hepitypes [15,16,17] could be made to understand the

potential sources of methylation variability at these genomic

locations.

Results

We determined DNA methylation differences on DNA derived

from peripheral whole blood from 60 Caucasians, comprising 30

with Type 2 diabetes (UK Warren 2 T2D case sample) and 30

without T2D (Exeter Family Study of Childhood Health). An all-

female set was used to remove any confounding effect of sex.

DNA Methylation Analysis within T2D Association SNP LD
Blocks

MeDIP-chip was performed on individual samples to quantify

DNA methylation. The relationship between genetic haplotypes

and DNA methylation at the genomic regions covered by the

microarray was estimated by summating the methylation scores,

estimated by the BATMAN algorithm, across each T2D

association SNP LD block (as defined by Gabriel et al. [18]), and

calculating an average ‘methylation load’ for all 60 individuals.

Individuals then were grouped into three genotypic sets by their

respective genotype for each T2D-association SNP (or tagging

SNP in perfect LD with association SNP). Kruskal-Wallis and

Linear Regression analyses were performed to determine the

relationship between genotype and average methylation score.

Uncorrected p-values for the Linear Regression analysis are shown

in Table 1.

Sliding Windows and Permutation Methylation Analysis
of the FTO LD Block

In our integrated epigenomic-genomic analysis, the large 46 kb

LD block of the FTO gene (Supplementary Figure S1) was the only

locus to reach nominal statistical significance by Kruskal-Wallis

analysis (p = 0.014). We performed a permutation analysis, in

which the genotype assignment and observed methylation scores

were shuffled 10,000 times, achieving a significant empirical p-

value of 0.012. Subsequent analysis by Linear Regression was

highly significant with p = 9.4061024, and empirical p-value

calculation by 10,000 permutations of 1.061023. Age was

included as a factor in this later analysis, as methylation changes

due to age are significant in certain loci [19,20,21], but was

excluded as a significant confounder (p = 0.676). We also

performed linear regression analysis for the other tested loci and

did not find any association between age and methylation (data

not shown). FTO SNP rs8050136 risk allele A homozygotes were

shown to have a higher average level of methylation of 0.531, with

heterozygotes at an intermediate level at 0.510 and G homozy-

gotes with 0.497 (Table 2). Of note, although the initial association

for FTO with BMI was identified by SNP rs9939609 [22],

numerous subsequent studies have used different SNPs, all of

which capture the same common haplotype (HapMap CEU

frequency = 0.425 (Figure 1)). This LD Block encompasses just

under half of the first intron, exon 2 and the beginning of

the second intron of the major FTO isoform (Supplementary

Figure S1).

To investigate whether this methylation difference was being

driven by a distinct region within the 46 kb LD block, and if so, to

isolate its location, a sliding windows analysis utilising BATMAN

methylation scores (estimated in 100 bp windows) was performed.

The sliding windows analysis uses a computational approach to

move different window sizes across each LD block, starting with a

window size of 1 (100 bp), increasing iteratively by one on each

pass, up to the maximum window number of 334 (Supplementary

Videos S1 and S2). A central peak of methylation difference was

most prominent in the 9 window (900 bp wide, at windows 161–

169, chr16:52,378,500-52,379,399) analysis with Kruskal-Wallis

p = 5.63061025, empirical p = ,161025 with 10,000 permuta-

tions and Linear Regression analysis p = 1.9461025 (Figure 2).

Methylation averages were again highest for the A homozygotes

(AA 0.603, AC 0.564, CC 0.507). In addition, plotting the slope of

linear regression analysis for the 9 window across the LD block

indicated that the p-value peaks all co-locate with the same

negative regression slope peaks. From these findings, we infer that

all of these regions could be contributing, with varying strength, to

the increased methylation signal (Supplementary Figure S2).

The strongest association between methylation and genotype

was identified with a larger window size of 60 (7.7 kb, after

exclusion of repeat regions, - windows 110–169, chr16:52,371,

700–52,379,399) with Kruskal-Wallis p = 8.6961026, empirical

p = ,161025 with 10,000 permutations, Linear Regression

analysis p = 1.3361027 (Figure 3) and age p = 0.444. This 7.7 kb

window becomes most significant just at the point when it

encapsulates the 900 bp window at its downstream edge. The

same trend in the average methylation scores was again identified

(AA 0.529, AC 0.503, CC 0.478, Figure 4). The sliding windows

FTO Haplotype DNA Methylation
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analysis was also performed across the other T2D association LD

blocks, but none showed any significant increasing p-values with

window sizes greater than 10 (1 kb) (data not shown).

The findings at the FTO LD block, using an integrated

epigenomic-genomic analysis, give a strong estimate of the

relationship between haplotype and DNA methylation level.

Since this approach is calculated by statistically-derived

methylation estimates in 100 bp windows, it is unable to define

the actual methylation state neither of individual CpG sites nor

their relationship to SNPs. We therefore proceeded to investi-

gate the genetic and epigenetic architecture of the 900 bp peak

window to explore the exact methylation differences driving this

signal.

Investigation of the Genetic Architecture Underlying the
900 bp Window Peak

The central 9 window peak of 900 bp contains only seven CpG

sites in the reference sequence, although of the eight common

SNPs within the same region, three create or abrogate additional

CpG sites (being YpG or CpR SNPs, IUPAC: Y = C or T, R = G

or A). These SNPs (rs7206629, rs7202116 and rs7202296) were all

included in the AFD-EUR European panel (dbSNP). In this

dataset they all possess identical minor allele frequencies (MAFs)

implying high likelihood of residing on the same haplotype

(Table 3). Only rs7202116 is included in the HapMap CEU data

set, and the methylated state allele, G of a CpG, is present on the

susceptibility haplotype (Figure 1), and is in absolute and near-

perfect LD with the susceptibility SNPs identified (Table 4).

Therefore those with the obesity-susceptibility haplotype would

possess ten CpG sites capable of methylation, compared with

seven, within this peak region.

Validation of Methylation Differences by Pyrosequencing
Methylation differences identified between the susceptibility and

non-susceptibility haplotypes were validated and quantified using

bisulphite-pyrosequencing on 80 samples, using the initial 60 plus

an additional 20 samples from the same studies. Within the 900 bp

window, four CpGs were investigated, located at the downstream

end of the 7.7 kb peak, and included one of the SNP dependent

CpGs (rs7202296). An additional six CpGs that lie directly

beneath the broad 7.7 kb peak, including one SNP dependent

CpG (rs11075988) were examined. The common SNP distribution

within the 7.7 kb region, which includes the 900 bp peak, is

detailed in Supplementary Figure S4.

Methylation levels at the cytosine adjacent to rs7202296 (CpR)

were, as expected, completely dependent on the presence of its

CpG conformation, with average methylation levels of 87% for A

Table 1. Average Methylation in Association SNP LD blocks by Genotype.

Average Methylation

Chr LD Block Genotyped SNP Gene/Locus 11 12 22 p-value

1 120236149 120398430 rs29343811 NOTCH2 0.496 0.495 0.502 0.187

2 43529937 43617946 rs7578597 THADA 0.492 0.512 0.504 0.564

3 12298413 12372392 rs1801282 PPARG 0.512 0.509 0.511 0.640

3 64673853 64705161 rs4607103 ADAMTS9 0.477 0.472 0.481 0.760

3 186971576 187031377 rs4402960 IGF2BP2 0.502 0.493 0.502 0.016

4 6317902 6363877 rs10010131 WFS1 0.581 0.604 0.590 0.982

7 28147081 28175361 rs864745 JAZF1 0.501 0.492 0.494 0.317

8 118252732 118254914 rs13266634 SLC30A8 0.333 0.350 0.303 0.865

9 22122209 22126489 rs10811661 CDKN2A/CDKN2B 0.543 0.512 0.512 0.389

10 12367941 123680402 rs12779790 CDC123/CAMK1D 0.611 0.590 0.671 0.913

10 94426831 94467199 rs1111875 HHEX/IDE 0.480 0.483 0.483 0.369

11 17350649 173652063 rs52194 KCNJ11 0.501 0.502 0.498 0.540

12 69942990 69949369 rs7961581 TSPAN8 0.457 0.461 0.470 0.289

16 52357008 52402988 rs8050136 FTO 0.497 0.510 0.531 9.39791024

17 33170413 33182480 rs757210 HNF1B 0.423 0.430 0.427 0.382

P-values are calculated by Linear Regression and are shown uncorrected (11 – homozygote common, 12 – heterozygote, 22 – homozygote rare allele).
a) r2 = 1 with rs10923931,
b) Not in LD block – single BATMAN window of 100 bp utilised,
c) LD block of associated SNP rs5215 used as rs5219 not typed in HapMap, r2 = 0.995 with rs5219. Methylation is given as average BATMAN scores across regions (0 =
unmethylated, 1 = fully methylated).
doi:10.1371/journal.pone.0014040.t001

Table 2. Average Methylation by rs8050136 Genotype.

FTO LD Block
(46 kb)

Broad Peak
(7.7 kb)

Narrow Peak
(900 bp)

Region 52,357,008–
52,402,988

52,371,700–
52,379,399

52,378,500–
52,379,399

AA 0.531 0.529 0.603

AC 0.510 0.503 0.564

CC 0.497 0.478 0.507

p-value 9.39761024 1.13361027 1.9461025

Results shown for the entire LD block, the Broad 7.7 kb 60-window peak
(Figure 3) and the Narrow 900 bp 9-window peak (Figure 2). Methylation is
given as average BATMAN scores across regions (0 = unmethylated, 1 = fully
methylated).
doi:10.1371/journal.pone.0014040.t002

FTO Haplotype DNA Methylation

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e14040



homozygotes, 55.7% for AC heterozygotes and 11.5% for C

homozygotes, with respect to rs8050136 genotype (Table 5). On

examination of the sequence information from the pyrosequencing

data, due to non-perfect LD between rs8050136 and rs7202296,

one individual homozygous for the A rs8050136 allele was in fact

homozygous CpA and another was heterozygote. Excluding these

two individuals, the methylation level was 98.6% for those who

were truly genetically CpG at rs7202296. The additional cytosines

examined within this window did not show differences that could

be accounted for by allele-specific methylation (ASM) or the

presence of a hepitype, whereby a cis-methylation effect on the

surrounding non-polymorphic CpG’s methylation state would

have been observed [15]. Of note is the ,50% methylation values

of the cytosine at 52,379,254, implying that whilst no evidence of

ASM, there may be parent-of-origin specific methylation imprint-

ing of this CpG, although FTO is not known to be imprinted [23].

The three in-phase CpG-creating SNPs could easily account on

their own for the ,10% difference seen in methylation levels in

the 900 bp window peak identified in the initial MeDIP-array.

The additional CpGs beneath the peak of Window 60, also

showed methylation changes associated with a CpR site at

rs11075988. At this SNP, the allele that abrogated the ability to

methylate was in LD with the rs8050136 susceptibility genotype A,

i.e. it was on the alternate phase. Decreased methylation of this one

SNP is therefore vastly outweighed by the rest of the haplotype.

The additional six CpGs showed methylation percentages for AA,

AC and CC genotypic groups respectively of 77.6, 72.8, 76.7

(16:52377247), 92.7, 92.0, 90.8 (16:52377254), 9.5, 38.4, 69.0

(16:52377271, rs11075988 dependent), 96.7, 98.5, 98.8

(16:52377279), 82.6, 78.4, 81.1 (16:52377282), and 87.4, 85.9,

84.9 (16:52377308).

Replication of Findings in Central Nervous Tissue
Finally, we used the same bisulphite-pyrosequencing assays to

determine whether methylation differences within the 900 bp

window peak were displayed in tissues which show high FTO

expression and have a role in central energy balance. We studied

14 healthy brain samples (4 hypothalamus and 10 prefrontal

cortex) and replicated the same findings at the CpG-creating SNPs

described above. We did not see any allele-specific effects on the

surrounding CpG sites.

Evolutionary Analysis
Examination of the three critical CpG-creating SNPs within the

narrow peak (rs7206629, rs7202116 and rs7202296) revealed that

the latter two have transitioned from CpA to CpG, gaining the

ability to methylate from the ancestral state (identical in Pan

Troglodytes, Pongo pygmaeus and Macaca mulatta, Table 6). This

mutational event is rarer than the reverse transition by

deamination of the methylated cytosine [24], and identical

frequency of both SNPs are seen in three ethnicity panels

(Table 3). Analysis of dbSNP data (release 129) indicated that

whilst ,60% of 193,133 validated SNPs on chromosome 16, with

known ancestral state, occur at a CpG site, only ,12% of them

have gained the ability to methylate since their common ancestor

and less than 0.5% lie within at least 75 bp of each other, as per

Figure 1. Haplotypes for FTO Susceptibility LD Block from HapMap CEU. BMI Association-SNPs are in red boxes for the respective studies.
SNPs 08 (rs1421085) & 34 (rs17817449) – Dina et al. [33], SNP 39 (rs8050136) – Scott et al. [34], SNP 44 (rs3751812) – Grant et al. [65], SNP 50
(rs9939609) – Frayling et al. [22], SNP 67 (rs9930506) – Scuteri et al. [35]. *The SNP rs8050136 genotypes were used as the haplotype tagging SNP for
this study’s subjects. SNP 52 – (rs7202116 blue box) is CpG-creating or abrogating dependent upon which allele is present and resides within the
900 bp window peak.
doi:10.1371/journal.pone.0014040.g001

FTO Haplotype DNA Methylation
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rs7202116 and rs7202996. Furthermore, rs7202116 is located

within a short 49 bp mammalian evolutionarily constrained

element (Chr16:52,379,085–52,379,132) as identified by Genomic

Evolutionary Rate Profiling (GERP) [25] of 31 eutherian

mammals.

We analysed the 420 HapMap Phase II phased SNP haplotypes

for CEU, YRI and ASN and found that this region comprises 60

unique haplotypes. A Median-Joining Network analysis [26,27]

(Supplementary Figure S3) was performed, including an inferred

ancestral haplotype, which indicated that the susceptibility

haplotype is closer to, or less mutational events away from, this

ancestral haplotype. This finding suggests that the ability to

methylate was gained early, is maintained on the susceptibility

haplotype, and has been lost in the younger haplotypes present in

humans. However no haplotypic evidence of selection was

apparent (XP-EHH [28] or iHS [29], data not shown), although

these tests are more powerful for more recent mutational events.

Enhancer Activity Evidence within the 7.7 kb Region
A ChIP-chip study, using the same T2D array as part of a larger

experiment, investigated normal skeletal muscle cells and identi-

fied evidence of enhancer activity within the 7.7 kb window, with

the classic signature of H3K4me1 and no other strong signal

(Supplementary Figure S4). These findings are consistent with

those of Ragvin et al. who have recently identified long range

enhancers within the first intron of FTO that influence the

expression of IRX3, located ,470 kb downstream of this region.

[30]. One of the two critical Highly Conserved Noncoding

Elements (HCNEs) proposed to affect IRX3 expression by

enhancer activity that overlaps with risk variants, designated as

element 6 by Ragvin et al. is located at Chr16:52,377,745–

52,378,287, and resides centrally within the broad 7.7 kb peak

(Figure 3). This 542 bp element is also only 213 bps 59 of the

900 bp window.

Expression Analysis
Direct analysis of allele-specific expression of FTO mRNA is not

possible as no common coding polymorphisms exist within the LD

block, or rest of the gene. Examining the Sanger GENEVAR

HapMap CEU expression data identified no significant differences

with respect to FTO haplotype status in FTO or IRX3 expression

from lymphoblastoid cell lines in children or adults [31] (data not

shown). We also used an available RNA-Seq dataset derived from

the cerebellum of six male individuals [32], but were unable to

identify allele-specific expression of FTO (by attempting to utilise

any pre-mRNA intronic reads that may be present) or IRX3. This

was due lack of informative SNPs in former and low coverage

across the latter.

T2D versus non-T2D analysis
We also compared individuals with and without T2D, as a case-

control analysis, across all the assayed regions of the array, (T2D

and obesity related phenotype candidates, 1q linkage region and

imprinted regions). We did not identify any disease-related

differently methylated regions (DMRs) of statistical significance

post false discovery rate correction (data not shown). The average

Figure 2. Linear Regression for Methylation with respect to Genotype for 9 Window. Linear regression p-values (-log 10) for a sliding
window of 9 BATMAN windows across the FTO LD susceptibility block (Chr16:52,357,008–52,402,988)
doi:10.1371/journal.pone.0014040.g002

FTO Haplotype DNA Methylation
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of the variance and standard deviation in methylation level for all

60 individuals across the entire MeDIP data set was 0.02 and 0.14,

respectively.

Discussion

Epigenomic factors, including DNA methylation, histone

modifications and non-coding RNAs, are an integral link between

DNA sequence variation and subsequent transcriptional output

modulation. Increased understanding of these elements will be

crucial to obtain a coherent functional assessment of the large

number of non-coding DNA variants identified from contempo-

rary whole genome sequencing case-control studies, and to

delineate their developmental and tissue-specific features and

constraints.

This study investigated the DNA methylation state of genomic

loci with evidence for involvement with T2D and found an

association with the susceptibility locus that resides within the FTO

gene. This region was identified in a T2D GWA Study, with a

common haplotype located across intron 1, exon 2 and intron 2

captured equivalently by various SNPs, subsequently shown to be

mediating its disease susceptibility effect through obesity

[22,33,34,35]. Murine models initially lent support to FTO itself

being the causal gene in the locus; an obesity protective phenotype

was observed in the fto knock-out mouse [36] and a similar but

lesser effect in the hypomorphic fto missense I367F mutant [37]. A

loss-of-function mutation in FTO was recognised in humans as an

autosomal-recessive lethal syndrome (OMIM #612938) with a

phenotype of multiple malformations and severe growth retarda-

tion, with non-obese heterozygote relatives [38]. Attempts to

identify expression differences in FTO in human skeletal muscle

and subcutaneous adipose tissue with respect to risk SNPs have

been unsuccessful to date [39] and no evidence of allele-specific

expression in immortalised lymphoblastic cell lines has been

established [40]. Subsequently Meyre et al. identified further FTO

heterozygous, loss-of-function mutations in obese as well as lean

subjects, further clouding FTO’s causative role [41] and illustrating

the complexity of interpreting the function of this dioxygenase in

energy balance [42].

Identification of stable epigenetic modifications may aid the

exploration of genotype-phenotype interactions in complex

diseases. DNA methylation can exert its functional influence

through a range of different processes, including direct effects on

transcription factor binding, or indirectly via changes to post-

translational histone packaging and modulation of chromatin

conformation and function [43]. The ability to detect these

epigenetic influences will depend on their direct association with

genotypic factors and will therefore range from obligatory to

stochastic [44]. Thus we have utilised the power of the large scale

GWA studies to look for genotype-methylation state associations.

We have identified a methylation association with the strongly

replicated disease haplotype of the FTO gene, tagged by SNP

rs8050136. Therefore the association identified is with the

individuals’ genotypes not their particular phenotype status. We

Figure 3. Linear Regression for Methylation with respect to Genotype for 60 Window. Linear regression p-values (-log 10) for a sliding
window of 60 BATMAN windows across the FTO LD susceptibility block (Chr16:52,357,008–52,402,988). Blue bar indicates location of HCNE enhancer
element 6 from Ragvin et al. [30].
doi:10.1371/journal.pone.0014040.g003

FTO Haplotype DNA Methylation
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confirmed and validated these results at single-base resolution

within the contributory signal using bisulphite pyrosequencing. In

doing so, we identified that the methylation signal was genetically

led by the phase of three CpG-creating SNPs in LD within a

narrow 900 bp window peak. We did not find evidence of a cis-

methylation or hepitype effect [15,16,17]. The ,10% change

identified in our MeDIP experiment is likely to be an

underestimate in this region as BATMAN calculations are based

upon the reference genome. Additional work in murine strains also

supports the inference that inherited genetic variability is a major

determinate on epigenetic variability [45]. Zhang et al. identified

ASM with as much as 85% difference between alleles across CpG

Islands (CGIs) [46]. However, it is not clear how much of this

effect is driven by CpG-creating SNPs or the additional influence

on surrounding CpG methylation, other genetic polymorphism

effects on the methylation machinery, or a combination of all of

these factors. Shoemaker et al. have recently observed ASM in 23–

37% heterozygous SNPs in differing human cell lines, with 38–

88% of these regions dependent on CpG-SNP variation [47]. We

have termed our findings of a genetically-driven difference in

methylation ability, detected over kilobases, Haplotype-Specific

Methylation (HSM), to differentiate this state from epigenetic

ASM where methylation will vary between alleles at individual

non-SNP CpGs, or a hepitype where genetic variability combines

with ASM within a haplotype. In a similarly designed, but larger

study, the FTO HSM region would be identified as a direct T2D-

DMR.

We did not find an association between risk and non-risk

haplotypes in the other T2D association LD blocks in this

integrated analysis, however this does not exclude the possibility of

more subtle effects in these regions. Although the limitation of the

MeDIP technique is that is does not enable the evaluation of

individual cytosines, it does allow more broad-scale haplotype

methylation differences to be identified, such as those driven by

Figure 4. Box plot of Methylation Scores with respect to Genotype in 7.7 kb Window. Methylation values for Broad Peak within 7.7 kb
window for AA susceptibility homozygote, AC heterozygote and CC homozygote of rs8050136. Linear regression p = 1.3361027.
doi:10.1371/journal.pone.0014040.g004

Table 3. Allele Frequencies for CpG-creating SNPs in 900 bp window peak.

SNP Major Minor EUR CHN AFR Ancestral

rs7206629 YpG T C 0.609 0.391 0.833 0.167 0.587 0.413 C

rs7202116 CpR A G 0.609 0.391 0.833 0.167 0.674 0.326 A

rs7202296 CpR A G 0.609 0.391 0.833 0.167 0.674 0.326 A

CpG creating allele given in bold. EUR = European, CHN = Asian, AFR = African American from dbSNP. CpG-creating sites (YpG or CpR SNPs, IUPAC: Y = C or T, R = G or
A).
doi:10.1371/journal.pone.0014040.t003
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CpG-SNPs [14,47]. These genetic drivers of ASM can be

identified in easy accessible tissue, which can then be followed

up in the most appropriate disease-related tissue to examine for

any surrounding CpG modulation.

Recent work has hypothesized that the lack of evidence for FTO

expression modulation by susceptibility SNPs may be due to this

region having effects on distal surrounding genes including IRX3

[30] and RBL2 [48]. Ragvin et al. used comparative genomics to

identify HCNEs and overlying genomic regulatory blocks, and

proposed that enhancers in the first intron susceptibility region

exert long range regulatory effects on expression of the

developmental transcription factor gene IRX3, Iroquois Homeo-

box 3 located in a gene desert ,170 kb 39 of FTO [30]. Enhancers

are located predominantly in intergenic or intronic regions and

may act as regulators of gene transcription over long distances

[49], have an activating function on chromatin structure [50], are

sensitive to CpG methylation [51] and have a important role in

developmental processes [43,52,53]. Of two HCNE-containing

elements with enhancer effects implicated with a metabolic role,

one is located within the 7.7 kb methylation window

(chr16:52,371,700–52,379,399). Higher regional methylation of

this enhancer, caused through increased methylatable CpG sites,

on the susceptibility haplotype may impede its action in terms of

enhancer-specific transcription factor recruitment, subsequent

chromatin DNA looping, enhancer-promoter interaction and

enhanceosome formation [51] with subsequent down-regulation

on IRX3 expression. Additionally this HCNE is just over 200 bp 59

of the 900 bp window (chr16:52,378,500–52,379,399). Therefore

the 900 bp peak is within a 2 kb ‘shore’ region of this enhancer

and it may be possible that these ‘Enhancer shores’ act in a similar

fashion to ‘CpG Island shores’ (2 kb either side of Islands) and

regions of low CpG density, which have been identified with more

dynamic DNA methylation effects [54]. Our ChIP-chip data from

skeletal muscle indicate a H3K4me1 signature within the 7.7 kb

region, as well ChIP-Seq data from cell lines confirms a 5K block

of H3K4me1 enrichment completely encapsulated here (http://

bioinformatics-renlab.ucsd.edu/enhancer) (Supplementary Figure

S4) [50] and a recent examination of histone modifications in

pancreatic islets also identified this enhancer marker 1.2 kb wide

over rs8050136 within the region [55]. No evidence of allele-

specific expression was identified from different sources; therefore

whilst the DNA methylation state of the enhancer-including

haplotype may be observed in all tissues, due to being

predominately genetically driven due to CpG-SNPs, the possible

outcome of effect on expression may only be seen in precise cell

types at a precise time and/or environmental-specific manner

[40].

Despite the interesting genomic overlap between the 7.7 kb

region of HSM and the HCNEs identified by Ragvin et al., the

phylogenetically distant zebrafish knock-down of the orthologous

irx3a has reduced pancreatic b insulin- and a glucagon-secreting

cells and increased ghrelin-producing e cells. The role of IRX3 in

pancreatic development is in conflict with the knowledge that most

obese individuals display an increase in pancreatic beta cell mass

as a compensatory response to the peripheral insulin resistance

that co-exists [56] and the knowledge that most previously-

identified obesity genes are involved in neuronally-mediated

central energy balance [42]. However the evidence of functional

enhancer capability of this conserved non-coding region is the

crucial finding, as its downstream target may have changed or

evolved to take on a more complex role over time. It is possible

that IRX3’s role in neurodevelopment of the posterior forebrain in

mammals, including the hypothalamus, may in fact be critical

[54,57,58]. Redressing the previous evidence in favour of FTO

causative role, the fto knock-out mouse targeted exon 2 and 3, only

,1 kb into intron 1 [36], therefore did not remove any of the

putative enhancers. If FTO is involved in the phenotype, the

observed methylation change could affect expression by changing

gene-body methylation or influencing the isoform balance by

modifying exon inclusion or exclusion [59].

Loss or gain of CpG dinucleotides over evolutionary time

leading to a genetically-driven variation in DNA methylation and

subsequent higher variance has been proposed to be a major

driver in evolutionary adaption as well as disease susceptibility

[60,61]. The loss of a CpG site, by deamination of methylated

cytosine, can not only can have considerable influence on regional

Table 4. LD relationship for FTO Association SNPs and rs7202116.

r2

SNP rs1421085 rs17817449 rs8050136 rs3751812 rs9939609 rs7202116* rs9930506

rs1421085 0.927 0.931 0.931 0.931 0.965 0.835

rs17817449 0.963 1 1 1 0.964 0.833

D’ rs8050136 0.965 1 1 1 0.966 0.841

rs3751812 0.965 1 1 1 0.966 0.841

rs9939609 0.965 1 1 1 0.966 0.841

rs7202116* 1 1 1 1 1 0.871

rs9930506 0.963 0.962 0.964 0.964 0.964 1

Results given for D’ and r2 in CEU HapMap population. *Indicates the methylation critical SNP within 900 bp window peak.
doi:10.1371/journal.pone.0014040.t004

Table 5. Pyrosequencing Validation Assay of Bisulphite-
treated DNA – Cytosine Methylation %.

CpG Location

rs8050136
Genotype 52379190* 52379221 52379251 52379254

AA 87 95.1 96.7 49.6

AC 55.7 95.5 97 51.6

CC 11.5 95.1 96.6 49.9

Location of methylated Cytosine of CpG from Hs36 Build within 900 bp 9-
Window.
*CpG-creating SNP rs7202296 dependent.
doi:10.1371/journal.pone.0014040.t005
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methylation [17], but is also an important mechanism in the

formation of transcription factor binding sites [62], such as for p53

that has a role in regulation of insulin resistance [63]. Acquiring

the ability to methylate by a cluster of in-phase alleles within a

regulatory domain could also be selected for, if functionally

significant.

Trans-ethnic studies, especially in genetically diverse African-

derived populations, can be informative in narrowing down the

location of a causative variant in regions of strong LD in the initial

study population [64]. The SNP rs3751812 was the only to confer

significant risk (T allele as on CEU susceptibility haplotype,

Figure 1) in an African-American study [65] and is in a LD block

in two African HapMap populations overlapping the 7.7 kb

window.

In conclusion, we have identified variant-CpG restricted

Haplotype-Specific Methylation within the FTO obesity suscepti-

bility locus. Previous association SNP findings were equivalent

across this region and therefore could be consistent with a

difference in CpG methylation capability being the driving factor

that is inherent to this haplotype. To our knowledge, this is the first

identification of any association with a measureable methylation

difference within a GWA Study SNP association locus. Detailed

analysis of the methylation signal and pyrosequencing validation

indicate the genetic phase of CpG-creating SNPs are a strong

influence in this finding, indicating LD with CpG-creating SNPs as

a relevant consideration in genomic methylation studies. A region

of 7.7 kb drove the most significant haplotype-specific methyla-

tion, and overlies a region containing putative enhancer sequence.

Our observation of increased methylation ability at this enhancer

region may contribute towards reducing the efficiency of this

regulatory element [51]. Thus the investigation of epigenetic

variation may be very useful in narrowing down significant regions

in large LD association blocks and proposing functional hypoth-

eses for subsequent follow-up from GWA studies.

Materials and Methods

Subjects
Whole blood genomic DNA from Caucasian individuals living

in the UK recruited to two pre-existing population cohorts

(coordinated by the same research centre) was used for the

experimental analyses. Forty UK Warren 2 T2D female

participants were selected from trios and had a diagnosis of Type

2 diabetes made by either current prescription of a diabetes-

specific medication or laboratory evidence of hyperglycemia

(World Health Organization definition) [66]. Forty female

participants without diabetes were selected from the Exeter

Family Study of Childhood Health and had normal fasting

glucose and/or HbA1c levels. The mean age of participants was

37 years (standard deviation 6.6) and mean body mass index

29.4 kg/m2 (standard deviation 8.1). Four hypothalamus and ten

prefrontal cortex samples were selected from ‘normal brain’ post-

mortem tissues from the MRC London Brainbank for Neurode-

generative Diseases at the Institute of Psychiatry in London, and

DNA was extracted using standard phenol: chloroform techniques.

Written informed consent was obtained from all participants.

Ethics approval was covered by the Southwest Multicentre

Research Ethics Committee MREC/00/6/55 (UK Warren 2

T2D samples) and Royal Devon and Exeter Healthcare NHS

Trust Study 1104 (Exeter Family Study). Post-mortem brain tissue

subjects are approached in life for written consent for brain

banking, and all tissue donations are consented, collected and

stored following legal and ethical guidelines (NHS reference

number 08/MRE09/38). The HTA license number for the

brainbank is 12293.

Array Design
The Nimblegen� array comprised of 387,835 50-75mer Probes

divided into 122 regions covering 37,037,978 bases of the genome.

(080314_HG18_PA_Tiling). This was targeted at all then known

T2D Association Loci (20 regions: +/2 60 kb around gene or LD

block around association SNP in non-genic regions), Monogenic

Obesity & Diabetes (13 genes), the T2D Chromosome 1q linkage

region (1q21-24: 148.4–171.3 Mb) comprising 22.8 Mb, identified

in multi-continental populations including European, East-Asian,

Native-American, and African-American [67]), all Known Im-

printed Genes & Imprinting Control Regions from the Imprinted

Gene and Parent-Of-Origin Effect Database (www.otago.ac.nz/

IGC) gene or control region +/2 5000 bp numbering 82 loci [23]

which includes confirmed human, as well as regions syntenic to

mouse imprinted loci which have not yet been confirmed in

human. Finally, a miscellaneous group of nine loci including

Coronary Artery Disease and Stature, hyperuricaemia association

regions and the PPARGCA1 gene [68] were included. For full list

see Supplementary Table S1. All coordinates are for genome build

NCBI Hs36.1/HG18.

MeDIP
The protocol was modified from Weber et al. [20] as previously

described. 1.7 mg DNA is sonicated to produce 300-700 bp

fragments. 500 ng DNA is set aside as the ‘input’ control and

the remaining 1.2 mg is denatured to become the ‘MeDIP’

fraction. Each denatured DNA sample was incubated with 5MeC-

mAb and added to DynabeadsH (Invitrogen). ‘MeDIP’ and ‘input’

DNA are then amplified using the Sigma-Aldrich GenomePlexH
Whole Genome Amplification kit. Quality control for MeDIP

enrichment efficiency is performed by Q-PCR comparison of two

differentially methylated regions of the genome (selected from the

Human Epigenome Project primer sequences; methylated locus

ID: 6583, unmethylated: 8804; available from www.epigenome.

org) with a minimum of a 3 cycle lag for the input compared to the

MeDIP fraction for the methylated locus.

Table 6. Primate Comparison for 900 bp CpG-creating SNPs.

rs7206629 rs7202116 rs7202296

Homo sapiens …TTGGTYGAAGT… …TAAACRTCTTT… …AAGCCRATAAA…

Pan troglodytes …TTGGTCGAAGT… …TAAACATCTTT… …AAGCCAATAAA…

Pongo pygmaeus …TTGGTCGAAGT… …TAAACATCTTT… …AAGCCAATAAA…

Macaca mulatta …TTGGCCGAAGT… …TAAACATCTTT… …AAGCCAATAAA…

SNPs rs7206629 at 52378914, rs7202116 at 52379116 and rs7202296 at 52379191 in the human sequence are shown in bold.
doi:10.1371/journal.pone.0014040.t006
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Quality Control
Intensity and Spatial Plots were drawn. Lowess Normalisation

was used to smooth out data variation arising from non-linear

responses during labelling, hybridisation, or scanning to the two

different dye colours. Quantile Normalisation was performed to

correct for variation in probe level intensities between arrays. The

normalised and raw data are available from GEO (Gene

Expression Omnibus, NCBI) under the accession number

GSE20553.

Estimation of Absolute Methylation
Array IP/intensity is assumed to be proportional to the density

of methylated CpGs. A Bayesian estimation of methylation within

fragments of varied CpG density is made using BATMAN

(described in detail in Down et al.), with the data output resulting

in 100 bp window methylation scores [69]. The algorithm was run

individually on each sample.

Differential Methylation Calling
BATMAN reported methylation values for 100 bp regions,

called ‘‘proxies’’, within larger regions of interest (ROI) varying

from 500 to 4000 bp in length. We aimed to call DMRs at the

length scale of ROIs to confer with normal methylation

consistency that occurs over 500–1000 bp. However, we also

observed that some proxies within ROIs exhibited significant

variation in methylation. We therefore sought an algorithm that

would call DMRs at the length of ROIs, but would use the

methylation values of the individual proxies within a ROI rather

than an average across all proxies. We adapted an empirical

Bayesian method [70], where the case/control status of a sample s

(Ps = 1 for case, Ps = 0 for control) is modelled as

EPsb~h{1 azp~1nproxmpsbpð Þ

where h is the logit-link function (logistic regression), nprox is the

number of proxies in the ROI, and mps is the methylation value

for proxy p in sample s. Because the number of samples is not large

(,number of proxies) we simplify the problem by assuming that all

regression coefficients are drawn from an underlying distribution

with mean zero and finite variance s2. The null hypothesis

,Ho : b1~b2~:::~bnprox~0

then becomes Ho: s2 = 0 [70]. The Bayesian algorithm reports p-

values for rejecting the null-hypothesis for each ROI. To correct

for multiple testing, we estimated the False Discovery Rate (FDR)

using two approaches: the q-value approach [71] and a

permutation-based approach whereby sample labels were permut-

ed a large number of times (.1000).

LD Block Methylation and Sliding Windows Analysis
Linkage Disequilibrium blocks around genotyped susceptibility

genes were defined as per Gabriel et al. [18], as implemented in

HAPLOVIEW v.4.1 [72]. At each block, subjects were grouped

by genotype without reference to case or control status, for each

T2D susceptibility SNP. Average methylation score was calculated

per block by summating scores for all BATMAN windows within

in it and dividing by the number of windows. Non-parametric

(Kruskal-Wallis) and parametric (Linear Regression) tests gener-

ated p value statistics for the mean methylation score with respect

to genotype status. Permutation empirical p-values were calculated

by retaining observed methylation scores and shuffling genotype

assignment 10,000 times.

A sliding windows analysis was performed across these LD

blocks using 100 bp BATMAN methylation output windows,

similar to that used in the context of contiguous SNP haplotypes

[73]. Starting with a window size of one and moving one window

along per calculation across the entire block, Kruskal–Wallis and

Linear Regression analyses were performed for the genotype

groups with respect to methylation scores. Window size was

increased by one on each pass and the analysis repeated, until the

window size equalled the entire LD block. The resulting p-values

were outputted and plotted at the midway point for each window.

Detection of both non-linear and a biologically plausible linear

association, between genotype and methylation status provides

robust support to the significant relationship at the FTO LD block

(Supplementary Video S1 and S2). Sliding windows analysis,

statistical calculation, and permutation scripts were written with

the R package [74].

Pyrosequencing
Primers were designed using the Biotage PSQ assay design

software 1.06 (� Biotage). Primer sequences and PCR reaction

details are available from the authors on request. The reaction was

performed on the Biotage PSQ HS96 instrument, as per

manufactures instructions.

Bioinformatic Analysis
All genome co-ordinates are given for NCBI Build Hs36.1/

UCSC hg18. Scripts for analysis and mining of non-ancestral

methylation creating SNPs from dbSNP were written in Perl.

Median Network Haplotype Analysis
Analysis was performed on phased SNP data from HapMap

Phase II SNP (420 phased haplotypes from the CEU, YRI & ASN

populations), plus the addition of the inferred ancestral haplotype

from ENSEMBL SNP data/dbSNP, for the FTO susceptibility LD

Block with the NETWORK 4.5.1.0 software [26] (� 2008 Fluxus

Technology Ltd). Modelling the hypermutability of CpG transi-

tion between 2x to 15x baseline rate did not change tree pattern,

only shortened intervening branches with increasing rate (Supple-

mentary Figure S3 is shown for 15x) [75,76].

RNA-Seq Analysis
RNA-Seq data generated by an Illumina Genome Analyser

from RNA derived from ,24 hr post-mortem Cerebellum tissue

samples of six anonymous unrelated donor males was available

from the paper of Wang et al. [32]. These data were aligned using

TopHat 1.0, which incorporates the Bowtie aligner and addition-

ally generates splice junction reads [77]. SAM output files were

visualised with the Integrative Genomics Viewer (version 1.4.01,

http://www.broadinstitute.org/igv).

ChIP-Chip
Chromatin Immunoprecipitation for H3K4me1, H3K4me2,

H3K4me3, CTCF, H3K9me1 and H3K9me2 was performed on

the same T2D designed arrays in normal human skeletal muscle

cells, as part of a larger experiment utilising a standard protocol

[78]. ChIP Peaks were located by MPeak [79]. Duplicates were

performed for all, with 90–95% agreement between replicates for

all antibodies.

Supporting Information

Figure S1 FTO HapMap CEU Linkage Disequilibrium.

Location of FTO Association LD block indicated by Red
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Rectangle, as visualised in HAPLOVIEW with LD block as

defined by Gabriel et al. [18].

Found at: doi:10.1371/journal.pone.0014040.s001 (8.73 MB TIF)

Figure S2 Linear Regression Slope viewed with Linear Regres-

sion p-values. Plot of Negative Slope of Linear Regression for the 9

window across the LD block (below) indicating Negative Slope at

regions of p-value peaks (above).

Found at: doi:10.1371/journal.pone.0014040.s002 (0.43 MB TIF)

Figure S3 Median-Joining Network of FTO susceptibility region

haplotypes. Evolutionary relations of the 60 distinct haplotypes

from 420 phased haplotypes from HapMap phased haplotypes

(CEU, YRI and ASN) plus the Ancestral haplotype. Blue

(methylation capable haplotypes within the 900 bp narrow peak

with possession of the rs7202116 G allele) and Yellow (non-

methylation capable) circles are proportional in size to the number

of copies of that haplotype. Lines joining haplotypes are

proportional to the number of mutational events separating them.

Red nodes are unseen haplotypes, within this sampled set, that are

inferred by the MJ algorithm [26]. The thick blue outlined circle

represents the haplotype identical to entire CEU susceptibility

haplotype indicated in Figure 1 (made up of 49 CEU, 6 YRI & 9

ASN haplotypes).

Found at: doi:10.1371/journal.pone.0014040.s003 (8.48 MB TIF)

Figure S4 Enhancer Prediction in 7.7 kb Broad Peak. Enhancer

prediction within the Haplotype-Specific Methylation broad peak

window of 7.7 kb. Enhancer prediction from H3K4me1 Chip-Seq

from Heintzmans et al. in red (http://bioinformatics-renlab.ucsd.

edu/enhancer) [50]. Location of Ragvin et al. predicted enhancer

(black with red border) and the H3K4me1 data from skeletal

muscle indicated in the H3K4me1_SO2 row. Blue rectangle

indicates 900 bp differential methylation region window that lies

in the shore region of the Ragvin et al. enhancer. CpG creating

SNPs in the 900 bp window are indicated with red rectangles.

Highest Vertebrate PhastCons Conserved Elements LOD score

[81] is underlined in red.

Found at: doi:10.1371/journal.pone.0014040.s004 (6.64 MB TIF)

Table S1 Array Design.

Found at: doi:10.1371/journal.pone.0014040.s005 (0.05 MB

XLS)

Video S1 Sliding windows for Kruskal-Wallis analyses across

FTO LD block.

Found at: doi:10.1371/journal.pone.0014040.s006 (1.05 MB

MOV)

Video S2 Sliding windows for Linear Regression analyses across

FTO LD block.

Found at: doi:10.1371/journal.pone.0014040.s007 (0.72 MB

MOV)
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